
1 | P a g e

Operating Systems

ENCS 339

Project #1

“Simulation of CPU scheduling algorithms”
__

PREPARED BY:

Waseem sayara ID: (#1182733).

Anas Barakat ID: (#1180180).

INSTRUCTOR: Dr. Adnad H. Yahya.

SECTION: 2

DATE: 18-11-2020

2 | P a g e

❖ Abstract:

Computer systems supporting multiprogramming or multitasking execute multiple programs or

tasks concurrently. Multiprogramming increases CPU utilization by organizing jobs so that the

CPU always has something to execute. To have several jobs ready to run, the system must keep all

of them in memory at the same time for their selection one-by-one. This work involves

development of a simulator for CPU scheduling. It has been developed as a comprehensive tool,

which runs a simulation in real time and generates useful data to be used for evaluation. This

simulator can be used for measuring performance of different scheduling algorithms. It simulates

First Come First Serve (FCFS) scheduling, Shortest Job First (SJF) scheduling, Shortest Remaining

Time First(SRTF) scheduling, priority scheduling with preemption (PRI) , priority scheduling

without preemption (PRI) , and Round Robin (RR) scheduling. A user-friendly and mouse- driven

graphical user interface has been integrated.

3 | P a g e

Table of Contents
❖ Abstract: .. 2

❖ Theory: .. 4

❖ Design Philosophy and Program Implementation: ... 5

❖ How the program work: ... 7

❖ Assumptions: ... 7

❖ Extra work: .. 7

❖ Results .. 8

▪ Input file 1: .. 8

▪ Input file 2: .. 12

▪ Input file 3: ... 16

▪ Generate process : ... 20

❖ References ... 24

4 | P a g e

❖ Theory:

CPU scheduling is an operation which allows one process to use the CPU while the execution of

another process is on hold due to unavailability of any resource like I/O etc, thereby making full use

of CPU. The aim of CPU scheduling is to make the system efficient, fast and fair. There are many

different CPU-scheduling algorithms:

1. FCFS: It is a non-preemptive, and the simplest CPU-scheduling algorithm. With this scheme,

the process that requests the CPU first is allocated the CPU first. The implementation of the

FCFS policy is easily managed with a FIFO queue.

2. SJF: It is non-preemptive, ready queue treated as a priority queue based on smallest CPU

time requirement, arriving jobs inserted at proper position in queue, dispatcher selects

shortest job (1st in queue) and runs to completion.

3. RR: It is similar to FCFS scheduling, but preemption is added to enable the system to switch

between processes. A small unit of time, called a time quantum or time slice, is defined. The

ready queue is treated as a circular queue. The CPU scheduler goes around the ready queue,

allocating the CPU to each process for a time interval of up to 1 time quantum.

4. SRTF: A preemptive version of SJF algorithm, which preempts the currently executing

process when a less remaining time process becomes available.

5. Priority Scheduling: A priority is associated with each process, and the CPU is allocated

to the process with the highest priority.

a) Priority scheduling with preemption: the task with higher priority than the current task

being executed arrives then the control of the CPU is taken from the current task and given

to the higher priority task.

b) Priority scheduling without preemption: the task with higher priority does arrive, it has

to wait for the current task to release the CPU before it can be executed.

There are many different criteria’s to check when considering the "best" scheduling algorithm, they

are:

• CPU Utilization: To make out the best use of CPU and not to waste any CPU cycle, CPU would

be working most of the time(Ideally 100% of the time). Considering a real system, CPU usage

should range from 40% (lightly loaded) to 90% (heavily loaded.).

• Turnaround Time: It is the amount of time taken to execute a particular process,

i.e. The interval from time of submission of the process to the time of completion of the

process(Wall clock time).

• Waiting Time: The sum of the periods spent waiting in the ready queue amount of time a process

has been waiting in the ready queue to acquire get control on the CPU.

5 | P a g e

❖ Design Philosophy and Program Implementation:

When you start the program a window looks like figure 1 opens.

Figure 1

The window gives the user the option to choose the scheduling algorithm using a combo box

(the RR algorithm is default), and to choose from 3 input files also in a combo box (input1.txt is

default), after the user chooses the algorithm and the input file he wants, he have to click in the

RUN button to start the simulation.

The output of the simulation is printed in two tables, the upper one has the values of each process

data, while the bottom one prints which process runs at every time unit in the CPU (X stands for

none).

In case of user choosing the RR algorithm, he must enter the Time Quantum he wants to use and

it must be an integer, else an error massage looks like Figure2 will pop up.

Figure 2

6 | P a g e

The program also gives the user the ability to simulate random generated processes by just

entering the count of them, and then click on the Generate button.

The constrains on the random generated processes are:

• The names for the process starts from 1.

• The arrival time for each process is an integer between 1 and 100.

• The burst time for each process is an integer between 1 and 1000.

• The priority for each process is an integer between 1 and 100.

• The repeat is always 1.

• The interval and the deadline are not used so they are assigned to X.

If the user entered a wrong number format in the generate box a massage will pop up like the

one in figure 3, and then the program will close.

Figure 3

7 | P a g e

❖ How the program work:

 We created a distinct code file for every schedule algorithm that can be called from the main

file, which organize the program, and makes sure that it works correct and errors free.

 When the user clicks on the RUN button the program will get the value of algorithm combo

box and the input file too, then according to the value of the algorithm it will call the wanted file of

code to run in the screen.

 In non-preemptive algorithms like FCFS, SJF and PRI without preemption, at first the program

reads the input file and store it two lists, one to keep the original data and other is to modified as the

simulation goes, then the program enters a loop which presents the CPU that breaks only when all the

processes are finished executing when the loop starts, first, it checks the available processes at the time

it reached using a special function that compares the time using the arrival time for each process, the

available processes enters the queue, then the program calls another function to choose the process to

be excused according the algorithm chosen, once the CPU gets the process, it keeps running until it

finished all its burst, then the current time increases by the process burst and start over the loop.

 In preemptive algorithms like SRTF and PRI with preemption, at first the program reads the

input file and store it two lists, one to keep the original data and other is to modified as the simulation

goes, then the program enters a loop which presents the CPU that breaks only when all the processes

are finished executing when the loop starts, first, it checks the available processes at the time it reached

using a special function that compares the time using the arrival time for each process, the available

processes enters the queue, then the program calls another function to choose the process to be excused

according the algorithm chosen, once the CPU gets the process, it runs for only one time unit, then

recheck if it’s the turn of another process to run or not, if there is another process at that time with

higher priority then it enters the CPU instead of the running one, else it keeps running.

Aging:

 The priority for the waiting processes is increases every some time that is random value for

every time the program runs, we used this method to solve the starvation in PRI algorithms.

❖ Assumptions:

 Priority: the higher number presents the higher priority.

 Aging: the aging time is random.

 Priority value: the process priority value is an input from the file.

❖ Extra work:

 Friendly user interface.

 Extra algorithms (6 instead of 4).

8 | P a g e

❖ Results
We created 3 different input files each file contains different processes were generated for each algorithm.

▪ Input file 1:

1) RR (with time quantum=1):

2) RR (with time quantum=2):

9 | P a g e

3) FCFS:

4) SJF:

10 | P a g e

5) SRTF :

6) PRI (PREEMPTIVE) :

11 | P a g e

7) PRI (WITHOUT PREEMPTIVE) :

12 | P a g e

▪ Input file 2:

1) RR (with time quantum=1):

2) RR (with time quantum=2):

13 | P a g e

3) FCFS:

4) SJF:

14 | P a g e

5) SRTF :

6) PRI (PREEMPTIVE) :

15 | P a g e

7) PRI (WITHOUT PREEMPTIVE) :

16 | P a g e

▪ Input file 3:

1) RR (with time quantum=3):

2) RR (with time quantum=5):

17 | P a g e

3) FCFS:

4) SJF:

18 | P a g e

5) SRTF :

6) PRI (PREEMPTIVE) :

19 | P a g e

7) PRI (WITHOUT PREEMPTIVE) :

20 | P a g e

▪ Generate process :

1) RR (with time quantum=3 & generate process = 5):

2) RR (with time quantum=2 & generate process =4):

21 | P a g e

3) FCFS (with generate process = 3):

4) SJF (with generate process =6):

22 | P a g e

5) SRTF (with generate process =3):

6) PRI(PREEMPTIVE) (with generate process =5):

23 | P a g e

7) PRI(NON PREEMPTIVE) (with generate process =4):

24 | P a g e

❖ References

- https://cutt.ly/6tqQF7 Wednesday 18-11-2020 @ 5:00 pm

- https://www.geeksforgeeks.org/difference-between-preemptive-priority-based-

and-non-preemptive-priority-based-cpu-scheduling-algorithms/ Wednesday 18-11-

2020 @ 5:30 pm

- A SIMULATION PROJECT FOR AN OPERATING SYSTEMS COURSE(John K.

Estell, The University of Toledo)

https://cutt.ly/6tqQF7
https://www.geeksforgeeks.org/difference-between-preemptive-priority-based-and-non-preemptive-priority-based-cpu-scheduling-algorithms/
https://www.geeksforgeeks.org/difference-between-preemptive-priority-based-and-non-preemptive-priority-based-cpu-scheduling-algorithms/

